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Abstract 
 
At high frequencies, energy methods such as the statistical energy analysis and the power flow analysis have been 

popularly used to predict the averaged responses of vibro-acoustic subsystems. Usually, these energy methods ignore 
flexural nearfield components and phase information, mainly for simplicity. Such assumptions sometimes lead to an 
erroneous conclusion, in particular for complex structures and at medium frequencies around the Schroeder cutoff fre-
quency. This paper deals with the effects of nearfield waves and phase information at medium to high frequencies by 
using the ray tracing method (RTM). A curved beam and a coupled beam system were chosen as test examples, which 
exhibit the typical mode conversion between various types of travelling waves. Propagation of longitudinal, flexural, 
and torsional waves was studied based on the Euler-Bernoulli beam theory. Analyses of the spatial distribution of vi-
brational energy quantities revealed that the conventional RTM could mimic the overall trend of the traveling wave 
solution. However, the results varied smoothly in space due to the neglect of wave interference. By considering the 
phase information, local fluctuations of vibration energy could be correctly described. It was confirmed that the flexural 
nearfield plays a significant role near boundaries and junctions. It was also shown that the accuracy of the analysis 
depends mainly on the modal overlap factor. Similar to other high frequency methods, the results become close to the 
traveling wave solutions as the modal overlap factor increases. 
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1. Introduction 

In the vibro-acoustic design of structures, wave 
based methods such as the finite element method and 
the boundary element method are effective for low 
frequency prediction. However, it is well known that 
these methods are not suitable for mid-to-high fre-
quency analyses because of errors due to a small 
mesh size, huge number of elements, high order in-
terpolation functions, and excessive modal overlap. 
At high frequency bands, where modes are highly 
overlapped, the statistical energy analysis (SEA) has 

been widely used to predict time-, frequency-, and 
space-averaged responses of built-up structures [1]. 
Applications of the SEA are limited by many under-
lying assumptions and the fact that results do not pro-
vide detailed information, viz., spatial distributions of 
vibration responses in a subsystem of a complex 
structure. To predict how vibration energy distributes, 
the power flow analysis (PFA) has been suggested [2, 
3]. The PFA can predict frequency-averaged vibra-
tional behavior of a structure in much the same man-
ner as the SEA. However, it was shown that the two-
dimensional PFA would be valid only for structures 
having a relatively small damping factor or highly 
reverberant wave field [4]. Le Bot also pointed out 
that a small damping loss factor is required for appli-
cations of the PFA [5]. 
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The ray tracing method (RTM) has been popularly 
adopted in the architectural acoustics area to predict 
acoustic impulse responses and field distributions at 
high frequencies [6, 7]. Initially, sound rays are ema-
nated from an excitation point and their propagating 
paths are traced. A response at an observation point is 
obtained by accumulating all contributions of sound 
rays. Basic applications of the RTM to the structure-
borne wave propagation have already been proposed 
[8], but it is rare to see literatures that deal with a 
detailed technique in applying it to specific structures. 

There are a number of curved structural elements 
that constitute real structures such as bridges, ships, 
vehicles, aircrafts, etc. For effective noise control, it is 
felt that considerable effort should be focused on 
accurate modeling of vibrational energy flow. In this 
paper, as an incipient attempt for this purpose, high 
frequency energy transmission through a curved 
beam was studied for the prediction of energy distri-
bution in space. Energy reflection and transmission in 
a single curved beam and a two-beam connected 
curved structure were modeled and analyzed by using 
the RTM including actions of longitudinal, flexural, 
and torsional waves. The ultimate purpose of the pa-
per is to shed light on the effects of nearfield wave 
terms and phase information in analyzing beam vibra-
tions. 
 

2. Kinetic model of the curved beam 

The curvature of a beam leads to a variety of 
shapes, which significantly modifies the vibrational 
behavior of the beam. A peculiar characteristic of 
curved structures is that the structure deforms simul-
taneously in more than two independent coordinates 
by a single wave excitation. Four important wave 
modes are conveyed in an elastic beam: a longitudinal 
wave, a torsional wave, and flexural waves in two 
directions. Previous studies are categorized into two 
groups: One group has studied the coupling between  
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Fig. 1. Definitions of geometry and coordinate system of a 
curved beam. 

the longitudinal wave and one flexural wave [5, 9-11], 
and others have focused on the coupling between the 
torsion and the other type of flexural wave [12-18], 
mostly by civil engineers. However, research works 
on the coupling among four wave types are rather 
scanty so far [19, 20]. 

Governing equations of a curved beam have been 
given by Love [21], Morley [22], and Vlasov [23]. 
The dynamic equations of the harmonic motion of a 
curved beam based on the Euler-Bernoulli theory can 
be expressed as follows (see Fig. 1): 
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Here, u denotes the normal displacement along the 
axial direction x, v and w are the displacements in the 
direction of y and z axes, respectively, φ  the rotation 
angle about the axial axis x, E and G the complex 
elastic and shear moduli, respectively, ρ the mass 
density, Ip the polar moment of inertia of the section, 
S the cross sectional area, Iy and Iz the principal mo-
ment of inertias of the section, J the torsional constant, 
ω  the angular frequency of the harmonic motion, 
and R the radius of curvature.  

The Euler-Bernoulli theory basically assumes neg-
ligible flexural rotary inertia and shear deformation. 
In the present study, uniform cross-section and con-
stant radius of curvature are assumed, and warping is 
also neglected. The equations governing the behavior 
of axial deformation and flexural deformation along 
the y-axis are coupled in terms of u and v. Similarly, 
the equations describing beam flexure about the z-
axis and torsion are coupled in terms of w and φ . 
Propagation characteristics are obtained by assuming 
harmonic waves in the form of  
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A non-dimensionalized form of the governing 

equation is given by 
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where /z lcωκ ′′Ω =  denotes the non-dimensional 
frequency, zK kκ=  the non-dimensional wave 
nu mber ,  /z ya κ κ= an d  /z pb κ κ=  t he  non-
dimensional radii of gyration, /z zr Rκ=  the non-
dimensional radius of curvature, /zµ κ α=  the non-
dimensional stiffness ratio, /lc E ρ′′ =

 the longitudi-
nal wave speed in a bar, yκ , zκ , pκ  the radii of 
gyration for Iy, Iz, Ip, respectively, such that 

/y yI Sκ = , /z zI Sκ = , /p pI Sκ = , and α =  
/GJ ES  the ratio of torsional stiffness to longitudi-

nal stiffness.  
Freely propagating harmonic waves may exist only 

if the determinant in the above system vanishes. The 
resulting dispersion equation is given by 
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Because Eq. (4) is an even function, six pairs of 

roots are found. Each pair has the same amplitude 
with opposite signs, which means the two traveling 
waves propagating in opposite directions. The wave 
number are generally complex valued as 

, , , , , ,

, , , , , ,

p p e e
l l fy fy fy fy

p p e e
fz fz fz fz t t

k k k k k k

k k k k k k

 −   −   −

 −   −   −
  (6) 

 
where the subscript l refers to the longitudinal waves, 
fy to the flexural waves in the y-direction, fz to the 
flexural waves in the z-direction, t to the torsional 
waves, and the superscript p denotes the propagating 
waves, and e the evanescent components. As can be 
seen, there are four nearfield wave components. 
Therefore, displacement variables, having six terms 
for each, can be expressed as  
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In these solutions, the coupling between u and v is 

expressed by the relation as follows: 
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Here, the superscript + or – denotes the positively or 
the negatively propagating component, respectively. 
Similarly, the coupling between φ and w can be ex-
pressed as  
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Resultant forces in the curved beam are defined as  
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Then, the total energy density e and the power flow 
I for each wave component are given by the following 
equations: 
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3. The ray tracing method 

3.1 Basic concept of RTM for structural acoustics 

The ray tracing method, stemming from optics, is 
one of the geometrical acoustic simulation techniques, 
which has been widely applied to various acoustic 
areas, such as room acoustics, environmental acous-
tics, geophysics, underwater acoustics, etc. In apply-
ing the RTM, a sound source is modeled by a large 
number of sound rays, which are projected into a 
target field in a very narrow and even angular spacing. 
A ray is basically an infinitesimally thin line, which 
travels perpendicular to the surface of constant phase. 
Plane wave propagation in a beam structure can be 
replaced by a ray traveling along the axial direction, 
because the wavefront is always perpendicular to the 
axial coordinate of beams. Because energies are only 
carried by rays without phase information, the RTM 
is reliable only if the beam length L is much longer 
than the wavelength λ  [24].  

Several attempts have been made to analyze the 
structures by using the geometrical acoustics concept. 
Gunda et al. [25] applied the image source method 
(ISM) to a flat plate. The ISM utilizes mirror image 
sources outside of a real structure to satisfy boundary 
conditions. Parot and Thirard [26] analyzed a truss 
structure and a coupled plate by using the RTM. Chae 
and Ih [8] studied the applicability of RTM to a flat 

plate and a coupled structure, in which results were 
compared with those of the modal summation method 
and other high frequency methods.  

When a beam structure is excited, initial waves are 
generated from the excitation point as depicted in Fig 
2(a). The magnitude and phase of the initial waves are 
determined by the continuity equations of forces and 
moments at the excitation point. Propagation of initial 
waves can be regarded as a direct field or a response 
of the corresponding infinite structure. When the ini-
tial waves encounter the boundaries, reflected waves 
are generated; after a sufficient number of reflections, 
the steady state response reaches a converged value. 
Finally, the total response at an observation point is 
comprised of the direct field and the reflected field as 
follows:  
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Similarly, the impulse response for a source-

receiver pair is expressed as follows: 
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where xo and xs mean the observation point and exci-
tation point, respectively. The first term is the impulse 
response of an infinite structural element ( ), ;o sh x x t∞

r r . 
Successive signals arriving at the observation point 
can be represented by the reflected wave field 

( ), ;refl o sh x x tr r .  
Generally, high frequency results can be expressed 

in terms of energy quantities. Quadratic responses of 
the wave field parameter, e.g., displacement or veloc-
ity, can be derived as 
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Fig. 2. Schematic drawing of the ray tracing method for one-
dimensional system: (a) direct field, (b) reflected field. [ro] 
and [r1] denote the reflection coefficient matrices at x=0 and 
x=l, respectively. 
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In Eq. (15), the first and second terms on the right 
hand side represent the exponentially varying (expo-
nentially decreasing in most cases) fields. The last 
two terms mean the interaction between the direct and 
the reflected waves and the interferences between the 
reflected waves. These have a spatially fluctuating 
characteristic and can be smoothed out throughout a 
frequency band integration.  

Although reflected waves from boundaries are 
originated from the direct wave, they have different 
phase characteristic determined by the boundary con-
ditions. After several reflections, the reflected phase 
becomes random and incoherent with that of the di-
rect sound, particularly at high frequencies. Conduct-
ing a frequency band integration of Eq. (15) under the 
assumption of the presence of several modes within 
the band, the response fluctuation due to the interfer-
ence terms could be flattened out as 
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Once the quadratic response is determined as Eq. 

(16), all energy quantities including energy densities 
and power flows in each band can be calculated ac-
cording to Eqs. (11) and (12).  

  
3.2 Field transfer matrix 

The first step in applying the RTM to a curved 
beam structure is to calculate the wave numbers based 
on Eq. (4). Roots of the dispersion equation, Eq. (4), 
become close to those of a straight beam, if the radius 
of curvature goes infinite or the frequency increases. 
Using the calculated wave numbers, a field transfer 
matrix can be constructed. Eq. (17) shows an example 
of the transfer matrix for only positively propagating 

waves. It should be noted that two evanescent flexural 
waves are included as the 3rd and the 6th diagonal 
components. Above the ring frequency, waves in 
beams are supposed to have the following properties 
[27]: (i) predominantly longitudinal traveling wave; 
(ii) predominantly torsional traveling wave; (iii) pre-
dominantly flexural traveling wave along y-direction; 
(iv) predominantly flexural traveling wave along z-
direction; (v) predominantly flexural nearfield wave 
along y-direction; and (vi) predominantly flexural 
nearfield wave along z-direction. 
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Here, j denotes the imaginary unit ( 1= − ), η the 

structural loss factor, and s the propagation distance 
from the reference point. All components in the ma-
trix are complex valued. A diagonal transfer matrix 
means that a wave type does not couple with the other 
wave types during propagation. Mode conversion can 
occur only at boundaries. A field transfer function for 
energy quantities is obtained by squaring Eq. (17): 
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  (18) 
 

Obviously, vibrational energy quantities decay ex-
ponentially as waves travel. Assuming a hysteresis 
damping, a complex elastic modulus Eo(1+jη) is in-
troduced instead of an elastic modulus Eo. A complex 
wavenumber is given by k=ko-jωη /2cg for all waves. 
Here, ko is the wavenumber in a lossless medium and 

cg the group velocity. Consequently the exponent -
2Im(k) is given by ωη/cg, which is the propagation 
property in the PFA [5]. Note that the energy decay 
characteristics for all waves are expressed in the same 
manner, although the group velocity of the flexural 
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wave is twice the phase velocity, being different from 
other waves. It is noted that in the conventional ray 
tracing method, flexural evanescent waves are not 
considered. By ignoring two nearfield components, 
only four types of waves can exist: (i) predominantly 
longitudinal traveling wave; (ii) predominantly tor-
sional traveling wave; (iii) predominantly flexural 
traveling wave along y-direction; and (iv) predomi-
nantly flexural traveling wave along z-direction. 
 
3.3 Calculation of reflection/transmission coefficients 

A correct description of boundary and coupling 
conditions is crucial for the precision of the RTM. 
The nature of coupling between neighboring struc-
tures and boundary conditions can be expressed in 
terms of the reflection and transmission coefficients, 
which are obtained by continuity equations of dis-
placements, rotations, forces, and moments. During 
the calculation of coefficients, beams are assumed to 
be semi-infinite in the direction of departing from the 
junction, at which one wants to determine the coeffi-
cients. A semi-infinite structure ensures that there is 
no wave returning back from the other boundary.  

In Fig. 3, there are two boundaries and one junction 
for a coupled beam system. At the boundaries, six 
types of reflected waves are generated by an incident 
wave. Therefore, one should have six continuity 
equations in order to compute six reflection coeffi-
cients. For example, to satisfy the free boundary con-
dition at x=0, forces and moments should vanish as 
follows:  
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Fig. 3. A coupled beam model. Reflection coefficients [r] and 
transmission coefficients [t] are calculated by assuming semi-
infinite beams. 

Similarly, for the clamped boundary condition, dis-
placements (u, v, w) and rotations along x and y and z-
direction should vanish. At the coupled junction, dis-
placements, rotations, forces, and moments should 
have the same value at the right end of the left beam 
and at the left end of the right beam. Twelve continu-
ity equations end up with six reflected and six trans-
mitted coefficients, which clearly indicate the wave 
conversion phenomenon at the coupled junction. Wu 
and Lundberg [27] also adopted the same method for 
elastic longitudinal and flexural waves in a bent bar.  

Magnitudes of the reflection and transmission coef-
ficients should not exceed unity in accordance with 
the energy conservation principle. For estimating 
energy quantities, power reflection and transmission 
coefficients can be obtained by squaring the pressure 
reflection and transmission coefficients. One can 
expect that nearfield terms get significant near the 
discontinuities. However, because the evanescent 
waves diminish very quickly in the vicinity of 
boundaries or junctions, nearfield terms have been 
commonly neglected for energy methods [28]. How-
ever, the effects of nearfield components will be dis-
cussed in the next section. 

 
3.4 Valid condition for high frequency analyses 

In general, the validity of high frequency methods 
is based on two parameters: a modal overlap factor 
and a mode count in a band. Fahy and Mohammed 
[29] concluded that two parameters controlling the 
variability of power flow are the modal overlap factor 
(MOF=ηωn (ω); n (ω) being the modal density) of an 
uncoupled subsystems and the number of coupled 
modes of a total system. The coupling loss factor was 
found to exceed the actual value when the average 
MOF is much less than unity. According to their re-
search, it is necessary to have at lease five modes in a 
band or the modal overlap factor should exceed unity. 
Moens et al. [30] suggested a wavelength criterion for 
the PFA based on analyses by Morley [21]. They 
conducted a numerical validation for plates and cou-
pled plates by changing the hysteretic damping.  

Because the RTM utilizes the free-space Green 
function of an infinite structure, the accuracy of RTM 
is affected by the energy ratio of the direct field to the 
reflected field; when the damping is high enough, the 
direct field becomes dominant compared to the re-
flected field. Hence the RTM can yield far accurate 
result than in small damping cases. In sufficiently 
long beams, one could imagine that the energy ratio 
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gets high. Considering these two conditions, the MOF 
might be more appropriate parameter than the mode 
count for the RTM. Recall that the Schroeder cutoff 
frequency [28], which discriminates between high 
and low frequency range, is also affected by the 
equivalent absorption area, which is the multiplication 
of the total area (dimensions) and the average damp-
ing. The modal densities for longitudinal, flexural, 
and torsional waves in beams are given by  
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Thus, the MOF is directly proportional to the fre-

quency for longitudinal and torsional waves, not for 
flexural waves. The MOF increases with the loss 
factor and the length of beams.  
 

4. Numerical simulation 

Spectral analyses using energy methods are com-
monly conducted based on 1/3 or 1/1 octave band at 
high frequencies. In estimating energy responses, 
non-propagating components and the interference 
effects among propagating waves have been generally 
neglected. However, in this study two comparisons 
are emphasized: the effect of non-propagating com-
ponents near boundaries and junctions, and the effect 
of interferences. To do so, the RTM was modified 
considering the phase information. Then the method 
could predict displacement responses according to 
Eqs. (14) and (17), which employed pressure reflec-
tion and transmission coefficients from semi-infinite 
structures, as described in Section 3.3. Similar works 
have been conducted for 3-dimenstional room acous-
tic simulations by the authors [31, 32]. 

A typical single curved beam model is illustrated in 
Fig. 1. Material and dimensional data of the curved 
beam under consideration are as follows: mass den-
sity ρ=7800 kg/m3, Young’s modulus E=210 GPa 
(steel), width b=1×10-2 m, thickness h=1×10-2 m, 
length L=1 m, and radius of curvature R=0.25 m. 
RTM results were compared to solutions of the travel-
ing wave method (TWM), which is regarded as the 
exact solution.  

First, a displacement distribution was simulated by 
a modified RTM considering phase. Note that eva-
nescent wave components were also included in the 
analysis. Figure 4 shows spatial distributions of dis-

placements for a pure tone excitation at 100 Hz with 
η=0.005, low damping case. Obviously, such a condi-
tion is not favorable for high frequency energy meth-
ods. The two boundaries were modeled as a free-free 
condition and excitation forces were exerted at the 
right end as {N, Qy, Qz, My, Mz, T}={1,1,1,1,1,1}. The 
predicted displacements for a 100 Hz pure tone exci-
tation agrees well with the TWM solution. 

In Fig. 4(a), one can find that longitudinal waves 
are traveling even below the ring frequency of 3.3 
kHz, which might be contradictory to the general 
notion that the longitudinal wave cannot propagate 
below the ring frequency. However, it is true that the 
evanescent waves can propagate when the distance 
between neighboring discontinuities is short. In our 

 

 

 
 
Fig. 4. Spatial distributions of displacements for a pure tone 
excitation at 100 Hz with η=0.005: (a) longitudinal displace-
ment; (b) flexural displacement in y coordinate; (c) flexural 
displacement in z coordinate; (d) rotation angle; (e) error of 
longitudinal displacement; (f) error of flexural displacement 
in y direction; (g) error of flexural displacement in z direc-
tion; (h) error of rotation angle. , TWM; , modi-
fied RTM considering phase and evanescent waves. 
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Fig. 5. Frequency responses of energy densities at x=0.3 m 
with η=0.05; (a) longitudinal energy density; (b) flexural 
energy density in y direction; (c) flexural energy density in z 
direction; (d) torsional energy density. , TWM; , 
conventional RTM. 
 
case, the curved beam can be considered as a con-
tinuous discontinuity in its sectional area and the 
normal direction of it. Also, one can find that, accord-
ing to Ref. 11, the calculation frequency of 100 Hz 
belongs to the region II of the reference paper, where 
two predominant flexural waves and four decaying 
oscillating waves co-exist. This example clearly 
proves the capability of the modified ray model con-
sidering phase and evanescent waves for one-
dimensional structure.  

Fig. 5 shows frequency responses of energy density 
using the conventional ray model at an observation 
point at x=0.3 m. The conventional RTM solution 
neglecting both nearfield waves and interference can 
represent the tendency of the exact solution. At low 
frequencies and for low MOF, the predicted fre-
quency response is somewhat overestimated. In the 
longitudinal energy density analysis in Fig. 5(a), a 
single peak appears at the ring frequency of 3.3 kHz. 
Predicted spatial distributions of energy density and 
power flow are displayed in Fig. 6. The frequency 
range of interest is an octave band centered at 8 kHz 
with the damping loss factor of η=0.05. 

One can notice that it is a rather favorable condition 
for high frequency energy methods. The RTM solu-
tion shows a spatially smooth curve without local 
oscillation, but the tendency is well predicted. It can 
be interpreted that the conventional RTM is capable 
of predicting an overall trend of energy densities and 
power flows in space.  

In Fig. 6, the energy density of the right side of the 
curved beam is relatively high and consequently the  

 

 
 
Fig. 6. Spatial distributions of energies for the beam excited 
at right end (8 kHz octave band; η=0.05): (a) longitudinal 
energy density; (b) flexural energy density in y direction; (c) 
flexural energy density in z direction; (d) torsional energy 
density, (e) longitudinal energy power flow; (f) flexural 
power flow in y direction; (g) flexural power flow in z direc-
tion; (h) torsional power flow. , TWM; , conven-
tional RTM; , RTM considering evanescent wave. 

 
power flows in the negative direction. It is expected 
that all the active power flows at the left end should 
vanish theoretically, but the results of the RTM differ, 
particularly in Figs 6(g) and 6(h). 

However, the sum of the longitudinal and the flex-
ural power flows at x=0 in Figs. 6(e) and 6(f) and the 
sum of the other two power flows in Figs. 6(g) and 
6(h) become exactly zero at x=0. It is an apparent 
evidence of energy conversion happening in the ray 
model. When the evanescent waves are included (see 
solid lines), the responses at both boundaries are sig-
nificantly modified for the longitudinal and flexural 
energies. In the flexural energy densities, the RTM 
results including evanescent waves agree better with 
the TWM solutions. However, the torsional energy 
density and all power flow results barely change, 
even near the boundaries. 
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Fig. 7. Effects of evanescent wave on the spatial distribution 
of energy quantities (8 kHz octave band; η=0.05): (a) longi-
tudinal energy density; (b) flexural energy density in y direc-
tion; (c) flexural energy density in z direction; (d) torsional 
energy density, (e) longitudinal energy power flow; (f) flex-
ural power flow in y direction; (g) flexural power flow in z 
direction; (h) torsional power flow. , TWM; 

, RTM considering phase, but neglecting evanescent 
wave. 

 
Fig. 7 show spatial responses predicted by the 

modified RTM including the phase, but neglecting 
nearfield terms. Without the evanescent waves, the 
responses in the very vicinity to the boundaries 
slightly differ for longitudinal and flexural energy 
densities in Figs. 7(a)-(c). However, the predicted 
results for torsion and all the active power flows are 
rarely affected by the evanescent waves. As a conclu-
sion, evanescent waves can be commonly neglected 
for high frequency energy prediction. 

The effect of frequency on the spatial distribution 
of the flexural energy density was also investigated 
by changing the octave band from 125 Hz to 4 kHz, 
as shown in Fig. 8. One can clearly see that, as the 
frequency becomes higher, the RTM results agree  

 

 

 
 
Fig. 8. Effects of frequency band on the spatial distribution of 
flexural energy density in y-direction (η=0.05). The center 
frequency fc in each octave band is given by: (a) 125 Hz, (b) 
250 Hz, (c) 500 Hz, (d) 1 kHz, (e) 2 kHz, (f) 4 kHz. 

, TWM; , conventional RTM. 
 

better with the exact solutions; at high frequencies, 
local fluctuations are noticeably attenuated. Physib-
cally, at high frequencies a high overlap of many 
modes results in rather spatially smooth responses. 

Effects of damping loss factor on the spatial re-
sponse are shown in Fig. 9. In Fig. 9 (a), the vibration 
energy is fairly evenly distributed over the entire 
beam owing to small damping, although the local 
fluctuation is substantial. The RTM results are 
slightly overestimated from the mean value of the 
exact solution for small damping cases. As the damp-
ing increases, the vibration energy decreases sharply 
in space as the observation point goes farther away 
from the excitation point. These results clearly show 
the relation between the precision of the RTM and the 
internal damping of the structures. 

In addition to the single curved beam, a connected, 
curved, two-beam structure in Fig. 10 was considered. 
Radii of curvature are R1=0.25 m and R2=1 m, in 
which the subscript 1 is for the left beam and 2 the 
beam in the right-hand side.  

These beams are made of steel and the dimensions 
of the left beam were b1=1×10-2 m, h1=1×10-2 m, L1=1 
m, and the dimensions of the right beam were 
b2=2.5×10-3 m, h2=2.5×10-3 m, L2=1 m. The excitation 

(b) 
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Fig. 9. Effects of damping on the spatial distribution of flex-
ural energy density in y-direction (8 kHz octave band): (a) 
η=0.005, (b) η=0.01, (c) η=0.02, (d) η=0.04, (e) η=0.06, (f) 
η=0.08. , TWM; , conventional RTM. 
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Fig. 10. A coordinate system of a connected beam structure. 

 
condition was given at the left end of the whole struc-
ture, {N, Qy, Qz, My, Mz, T} ={1,1,1,1,1,1} 

Fig. 11 shows a comparison between RTM and 
TWM at 8 kHz octave band with η1=0.05 and η2=0.01. 
Similar to the previous results, the band-averaged 
RTM results of the connected structure represent the 
overall trend without exhibiting local oscillations. 
Because the sectional areas and the radii of the curva-
ture are different, abrupt changes at the junction were 
observed. 

The decay rate of energy in the left beam is some-
what stiffer than that in the right beam, because the 
damping loss factor of the left beam is much larger 
than that of the right beam.  

In Fig. 12, power reflection and transmission coef-
ficients at the joint of the coupled beams are shown  

 

 
 
Fig. 11. Spatial distributions of energy quantities for a con-
nected beam system excited at left end (8 kHz octave band, 
η1=0.005, η2=0.001): (a) longitudinal energy density; (b) 
flexural energy density in y direction; (c) flexural energy 
density in z direction; (d) torsional energy density, (e) longi-
tudinal energy power flow; (f) flexural power flow in y direc-
tion; (g) flexural power flow in z direction; (h) torsional 
power flow. , TWM; , conventional RTM. 
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Fig. 12. Power reflection and transmission coefficients at the 
junction for an incident flexural wave. , Power 
reflection coefficient R; , power transmission coef-
ficient τ. 

 
when a flexural wave is incident on the joint. The 
power transmission coefficient goes high as the fre-
quency increases, while the power reflection coeffi-
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cient converges to zero. As the frequency becomes 
higher, the ratio between the radius of curvature and 
the wavelength increases. It gets easier for structural 
waves to transmit through the junction at high fre-
quencies due to small impedance mismatch. 

As discussed in Sec. 3.4, the MOF is a good indica-
tor for validity of RTM. To examine the effect of 
MOF, we randomly selected 50 different cases by 
changing the length of the beam, the frequency of 
interest, and the damping loss factor. Ranges of vari-
ability for three parameters are follows: 0.005-0.05 
for the loss factor, 1 kHz-8 kHz for the frequency, 
0.5-1.5 m for the length of the beam structure. As a 
result of the parametric variations, the MOF have 
changed from 0.01 to 1. The relative error is defined 
as  
 

1 RTM TWM

n RTM n

y y
n y

ε
⎛ ⎞−
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⎝ ⎠

∑ ,   (21) 

 
where n denotes the number of the observation points 
used in the analysis of spatial distribution. In general, 
a denominator in the definition of a relative error 
should be the true value. However, when the true 
value becomes zero, the error gets infinite. Therefore, 
we adopted the RTM results as a reference value un-
der the assumption that RTM solution represents the 
mean value in most cases. Fig. 13 displays the calcu-
lated relative error is as a function of the MOF. The 
regression curve using 50 scattered data can be ob-
tained by using the first order exponential function as  
 

( )15.3 exp 6.3 MOFε = ⋅ − ⋅ ,  (22) 
 
which is drawn as the solid curve in the figure. Not-
withstanding the fact that the variations are substan-
tial in the low MOF range, one can conclude that the 
relative error is inversely proportional to the MOF. 
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Fig. 13. Relative error as a function of MOF. , Collected 
data; , regression curve. 

Reasonably small errors are found even below unity 
in MOF, being somewhat different from the finding 
by Fahy and Mohammed  [29]. 
 

5. Conclusions 

Spatial distributions of vibrational energies and en-
ergy flows of curved beams have been investigated 
based on the Euler-Bernoulli theory. Both the conven-
tional and the modified ray tracing methods were 
applied to predict the vibrational energy considering 
mode conversions among longitudinal, flexural, and 
torsional waves. The modified RTM is able to include 
nearfield waves and phase information; therefore, a 
displacement or a velocity can be predicted as well as 
energy responses, while the conventional RTM can 
predict only a smoothly varying overall energy ten-
dency without local fluctuations by neglecting the 
interference. Because fluctuations become smaller as 
the frequency and the structural damping go higher, 
the conventional RTM is sufficient for high overlap 
conditions. When evanescent waves were taken into 
account, the flexural energy responses were noticea-
bly improved only in the very vicinity of boundaries. 
For a connected two-beam system having different 
radii and cross sectional areas, the conventional and 
modified RTM can properly simulate the wave 
transmission and reflection phenomena. By changing 
the frequency, the damping, and the length of the 
beam, the precision of the simulation was examined. 
The precision of the RTM increases with increasing 
MOF. 
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